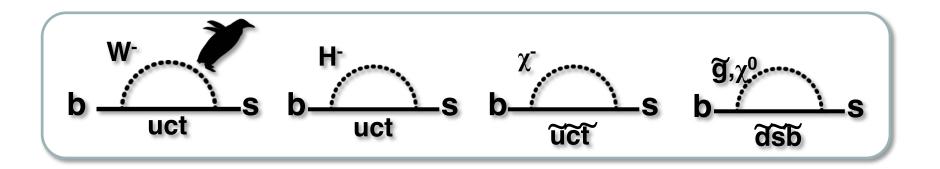
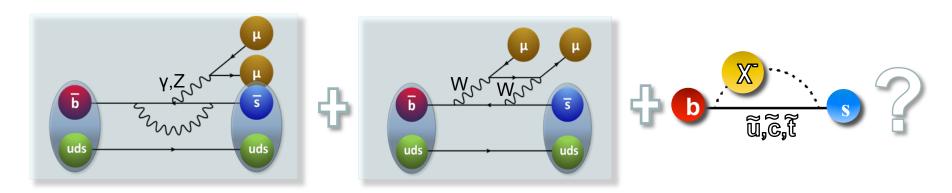


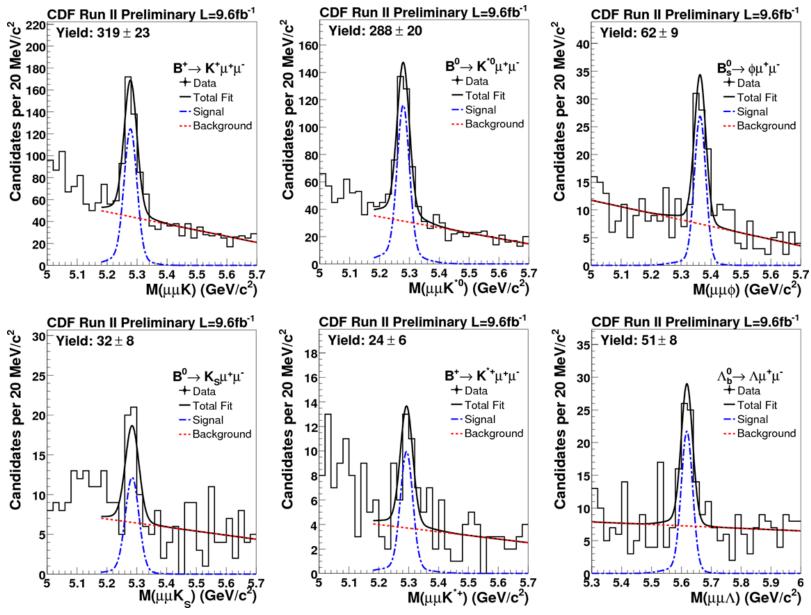
$B \rightarrow X_s \mu \mu$ Results from CDF


Satyajit Behari

Fermilab


7th International Workshop on the CKM Unitarity Triangle Cincinnatti, September 30, 2012

Search for NP in FCNC processes


- ➤ In SM Flavor Changing Neutral Current processes are forbidden via tree amplitudes. They occur via higher order loop (Penguin) diagrams.
- In BSM heavy exotic particle can participate in the loops and modify the amplitudes.
 - Very interesting in search for BSM physics.

$B \rightarrow X_s \mu \mu : A$ Golden Probe

- Three body decay provides observables sensitive to NP
 - → Total and differential BR, isospin asymmetry, forward-backward asymmetry...
 - CDF first measurements: Transverse polarization and T-odd CP asymmetries [PRL108, 081807 (2012)]
- Many modes:
 - \Rightarrow CDF first observations: $B_s \rightarrow \phi \mu\mu$ [PRL106, 161801 (2011)]
 - $\Lambda_b \rightarrow \Lambda$ μμ [PRL107, 201802 (2011)]
 - \Rightarrow B⁰ \rightarrow K^{*0}, K_s $\mu\mu$ B⁺ \rightarrow K^{*+}, K⁺ $\mu\mu$

Rare B yields 9.6 fb⁻¹

S. Behari, CDF B \rightarrow Xs μ μ Results

Measured BRs

Relative BRs

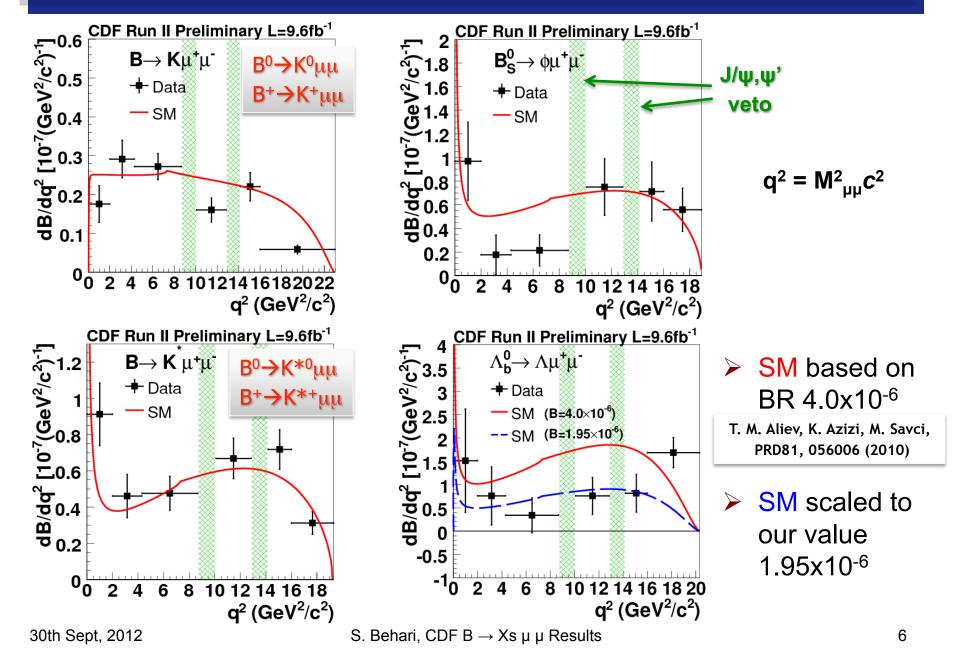
$$\begin{array}{ll} \mathcal{B}(B^{+}\to K^{+}\mu^{+}\mu^{-})/\mathcal{B}(B^{+}\to J/\psi K^{+}) &= [0.44\pm0.03(\mathrm{stat})\pm0.02(\mathrm{syst})]\times10^{-3}, \\ \mathcal{B}(B^{0}\to K^{*0}\mu^{+}\mu^{-})/\mathcal{B}(B^{0}\to J/\psi K^{*0}) &= [0.85\pm0.07(\mathrm{stat})\pm0.03(\mathrm{syst})]\times10^{-3}, \\ \mathcal{B}(B_{s}^{0}\to\phi\mu^{+}\mu^{-})/\mathcal{B}(B_{s}^{0}\to J/\psi\phi) &= [0.90\pm0.14(\mathrm{stat})\pm0.07(\mathrm{syst})]\times10^{-3}, \\ \mathcal{B}(B^{0}\to K^{0}\mu^{+}\mu^{-})/\mathcal{B}(B^{0}\to J/\psi K^{0}) &= [0.44\pm0.10(\mathrm{stat})\pm0.03(\mathrm{syst})]\times10^{-3}, \\ \mathcal{B}(B^{+}\to K^{*+}\mu^{+}\mu^{-})/\mathcal{B}(B^{+}\to J/\psi K^{*+}) &= [0.62\pm0.18(\mathrm{stat})\pm0.06(\mathrm{syst})]\times10^{-3}, \\ \mathcal{B}(\Lambda_{b}^{0}\to\Lambda\mu^{+}\mu^{-})/\mathcal{B}(\Lambda_{b}^{0}\to J/\psi\Lambda) &= [2.75\pm0.48(\mathrm{stat})\pm0.27(\mathrm{syst})]\times10^{-3}. \end{array}$$

→ Consistent with SM. Check angular variables.

Absolute BRs

$$\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-}) = [0.45 \pm 0.03(\text{stat}) \pm 0.02(\text{syst})] \times 10^{-6},$$

$$\mathcal{B}(B^{0} \to K^{*0}\mu^{+}\mu^{-}) = [1.14 \pm 0.09(\text{stat}) \pm 0.06(\text{syst})] \times 10^{-6},$$


$$\mathcal{B}(B_{s}^{0} \to \phi\mu^{+}\mu^{-}) = [1.17 \pm 0.18(\text{stat}) \pm 0.37(\text{syst})] \times 10^{-6},$$

$$\mathcal{B}(B^{0} \to K^{0}\mu^{+}\mu^{-}) = [0.33 \pm 0.08(\text{stat}) \pm 0.03(\text{syst})] \times 10^{-6},$$

$$\mathcal{B}(B^{+} \to K^{*+}\mu^{+}\mu^{-}) = [0.89 \pm 0.25(\text{stat}) \pm 0.09(\text{syst})] \times 10^{-6},$$

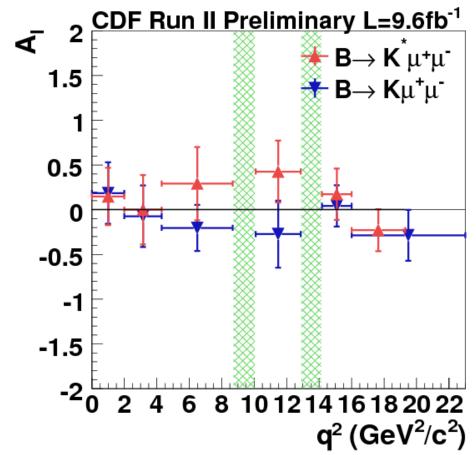
$$\mathcal{B}(\Lambda_{b}^{0} \to \Lambda\mu^{+}\mu^{-}) = [1.95 \pm 0.34(\text{stat}) \pm 0.61(\text{syst})] \times 10^{-6}.$$

Differential BRs

Isospin asymmetry

Isospin asymmetry:

$$A_{I} = \frac{dB(B^{0}) - r dB(B^{+})}{dB(B^{0}) + r dB(B^{+})}$$


$$1/r = \tau(B^+)/\tau(B^0) = 1.071 \pm 0.009$$

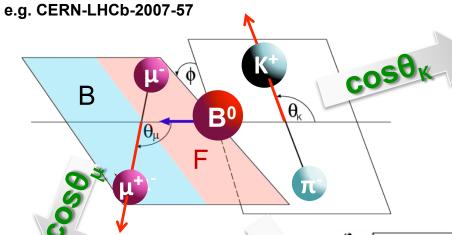
Integrated asymmetries:

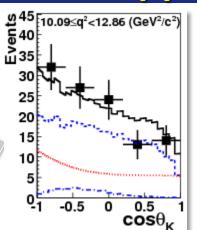
$$A_{I}(B \rightarrow K\mu\mu)$$

= -0.11 ± 0.13(stat) ± 0.05(syst)
 $A_{I}(B \rightarrow K^{*}\mu\mu)$
= 0.16 ± 0.14(stat) ± 0.06(syst)

Belle: 0.33^{+0.38}_{-0.44}

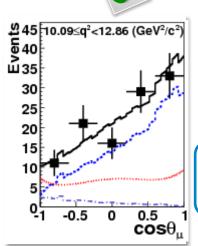
BaBar: -0.20^{+0.30}_{-0.23}

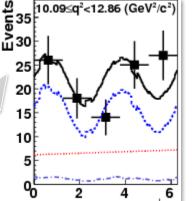



LHCb: -0.15±0.16

→ Consistent with zero. Same trend as other experiments.

Angular analysis B -> K* μμ

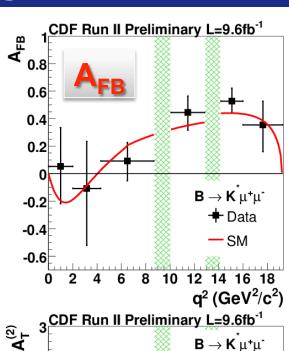

Extract various information from the decay angular distribution

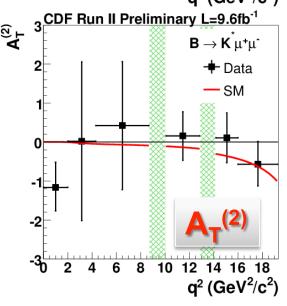


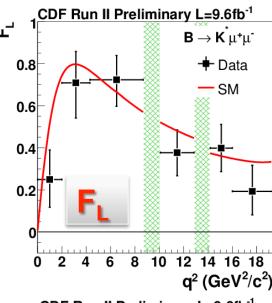
$$\frac{3}{2}F_{\rm L}\cos^2\theta_{\rm K} + \frac{3}{4}(1 - F_{\rm L})(1 - \cos^2\theta_{\rm K})$$

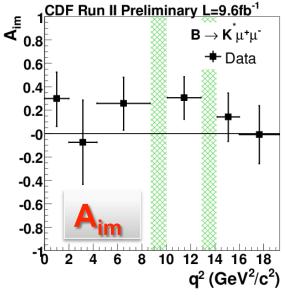
FB Asymmetry
AFR

A_T(2) Transverse polarization asymmetry


A_{im} T-odd CP asymmetry


$$\frac{1}{2\pi} \left[1 + \frac{1}{2} (1 - F_L) A_T^{(2)} \cos 2\phi + A_{im} \sin 2\phi \right]$$


$$\frac{3}{4}F_{L}(1-\cos^{2}\theta_{\mu})+\frac{3}{8}(1-F_{L})(1+\cos^{2}\theta_{\mu})+A_{FB}\cos\theta_{\mu}$$
 30th Sept, 2012 S. Behari, CDF B


Angular fit results

- ➤ Simultaneous fit with K*0 and K*+
- Consistent with previous measurements
- ➤ No significant deviation from SM within current precision

Conclusions

- ➤ CDF continues to explore rare B decays with its full 10 fb⁻¹ data sample.
- ➤ Total and differential BRs in various B → X_s µµ FCNC rare decays have been measured with full data sample.
- ightharpoonup Results from B ightharpoonup K* μμ angular analysis are consistent with SM and other experiments.
- For more results visit our results pages:
 - ⇒ CDF: http://www-cdf.fnal.gov/physics/new/bottom/bottom.html

BACKUP SLIDES

Angular fit results

\rightarrow B⁰ \rightarrow K^{*0} $\mu\mu$

q^2 range	F_L	A_{FB}	$A_T^{(2)}$	A_{im}
[0.00, 2.00)	$0.26^{+0.14}_{-0.13} \pm 0.04$	$0.07^{+0.29}_{-0.28} \pm 0.11$	$-0.97^{+0.66}_{-0.63} \pm 0.29$	$0.39^{+0.23}_{-0.24} \pm 0.08$
[2.00, 4.30)	$0.72^{+0.15}_{-0.17} \pm 0.09$	$-0.11^{+0.34}_{-0.45} \pm 0.16$	$0.40^{+2.16}_{-2.17} \pm 0.55$	$-0.01^{+0.38}_{-0.38} \pm 0.04$
[4.30, 8.68)	$0.72^{+0.12}_{-0.13} \pm 0.06$	$0.12^{+0.14}_{-0.15} \pm 0.04$	$-0.08^{+1.68}_{-1.66} \pm 0.33$	$0.25^{+0.24}_{-0.24} \pm 0.09$
[10.09, 12.86)	$0.35^{+0.11}_{-0.11} \pm 0.04$	$0.43^{+0.13}_{-0.13} \pm 0.07$	$0.22^{+0.60}_{-0.61} \pm 0.08$	$0.35^{+0.18}_{-0.19} \pm 0.06$
[14.18, 16.00)	$0.45^{+0.12}_{-0.12} \pm 0.04$	$0.49^{+0.10}_{-0.09} \pm 0.07$	$0.15^{+0.72}_{-0.72} \pm 0.14$	$0.16^{+0.21}_{-0.22} \pm 0.03$
[16.00, 19.30)	$0.09^{+0.14}_{-0.12} \pm 0.08$	$0.42^{+0.22}_{-0.23} \pm 0.09$	$-0.62^{+0.56}_{-0.53} \pm 0.13$	$0.02^{+0.26}_{-0.27} \pm 0.04$
[0.00, 4.30)	$0.44^{+0.11}_{-0.11} \pm 0.03$	$-0.04^{+0.23}_{-0.23} \pm 0.07$	$-0.59^{+0.68}_{-0.67} \pm 0.19$	$0.25^{+0.21}_{-0.21} \pm 0.05$
[1.00, 6.00)	$0.78^{+0.13}_{-0.15} \pm 0.08$	$0.29^{+0.25}_{-0.21} \pm 0.06$	$-0.45^{+2.24}_{-2.22} \pm 0.76$	$0.51^{+0.28}_{-0.29} \pm 0.15$

$\triangleright B \rightarrow K^* \mu \mu \quad [B^0, B^+ \text{ combined}]$

${q^2 \text{ range}}$	F_L	A_{FB}	$A_T^{(2)}$	A_{im}
[0.00, 2.00)	$0.25^{+0.14}_{-0.13} \pm 0.04$	$0.05^{+0.28}_{-0.27} \pm 0.10$	$-1.16^{+0.65}_{-0.60} \pm 0.34$	$0.30^{+0.23}_{-0.24} \pm 0.07$
[2.00, 4.30)	$0.71^{+0.15}_{-0.17} \pm 0.07$	$-0.11^{+0.34}_{-0.41} \pm 0.16$	$0.02^{+2.04}_{-2.04} \pm 0.30$	$-0.08^{+0.36}_{-0.36} \pm 0.07$
[4.30, 8.68)	$0.72^{+0.12}_{-0.13} \pm 0.05$	$0.09^{+0.14}_{-0.14} \pm 0.04$	$0.42^{+1.64}_{-1.64} \pm 0.64$	$0.26^{+0.22}_{-0.23} \pm 0.08$
[10.09, 12.86)	$0.38^{+0.11}_{-0.11} \pm 0.04$	$0.44^{+0.12}_{-0.13} \pm 0.08$	$0.16^{+0.62}_{-0.62} \pm 0.08$	$0.31^{+0.18}_{-0.18} \pm 0.06$
[14.18, 16.00)	$0.40^{+0.11}_{-0.11} \pm 0.04$	$0.53^{+0.09}_{-0.09} \pm 0.07$	$0.11^{+0.64}_{-0.64} \pm 0.11$	$0.14^{+0.20}_{-0.21} \pm 0.02$
[16.00, 19.30)	$0.19^{+0.12}_{-0.11} \pm 0.07$	$0.35^{+0.17}_{-0.19} \pm 0.06$	$-0.57^{+0.59}_{-0.56} \pm 0.12$	$-0.01^{+0.25}_{-0.25} \pm 0.04$
(0.00, 4.30)	$0.43^{+0.11}_{-0.11} \pm 0.03$	$-0.04^{+0.23}_{-0.22} \pm 0.07$	$-0.76^{+0.66}_{-0.65} \pm 0.22$	$0.15^{+0.20}_{-0.20} \pm 0.06$
[1.00, 6.00)	$0.76^{+0.12}_{-0.14} \pm 0.07$	$0.19^{+0.17}_{-0.21} \pm 0.05$	$-0.07^{+1.90}_{-1.90} \pm 0.19$	$0.42^{+0.24}_{-0.26} \pm 0.13$

Sources of systematics q²[1.00-6.00]

	A_{FB}	F_L	$A_T^{(2)}$	A_{im}
Signal fraction and B mass shape		✓	✓	✓
Angular acceptance				
Angular background	✓	•	✓	✓
K-π swap				
Peaking background				
Fit bias	✓			✓
Trigger bias				
F _∟ fit			✓	
TOTAL	0.064	0.078	0.758	0.152